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Abstract

Planar shock waves in single-crystal copper were simulated using non-equilibrium molecular
dynamics with a realistic embedded atom potential. The simulation results are in good agreement
with new experimental data presented here, for the Hugoniot of single-crystal copper along (100).
Simulations were performed for Hugoniot pressures in the range 2 GPa - 800 GPa, up to well
above the shock induced melting transition. Large anisotropies are found for shock propagation
along (100), (110), and (111), with quantitative differences from pair potentials results. Plastic
deformation starts at U, 2 0.75 km/s, and melting occurs between 200 and 220 GPa, in agreement
with the experimental melting pressure of polycrystalline copper. The Voigt and Reuss averages
of our simulated Hugoniot do not compare well below melting with the experimental Hugoniot of
polycrystalline copper. This is possibly due to experimental targets with preferential texturing

and/or a much lower Hugoniot elastic limit.

PACS numbers: 02.70.Ns, 05.70.Ln, 52.35.Tc, 62.50.4+p, 64.30.+t
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I. INTRODUCTION

Shock waves have long been used to study the equation of state of materials at extreme
conditions [1-3]. In addition, experiments on shock-induced plasticity and fracture have
provided useful insight into material deformation and failure [4]. However, a number of issues
are still not well understood. The constitutive equations are typically based on an equation
of state that assumes isotropic material response, an assumption which is certainly not true
for single crystals, and may even pose a problem for textured polycrystals. Furthermore,
in the context of plasticity a strong indication of limitations of our understanding is given
by the classic Frost and Ashby deformation maps which show an “unexplored region” for
deformation occurring at strain rates higher than 10°/s [5]. Laser-induced shocks [6] provide
a new way to produce very high strain rates, up to ~ 10'°/s for experiments to be carried
out in the near future at the National Ignition Facility (NIF). In addition, recent data for
single crystals [7, 8] suggest that the plastic response in Cu occurs rapidly, but even with
the fast dislocation motion in Cu, the kinetics are likely to be important on timescales that
will soon be accessible in experiment (~ 100 ps).

There are current limitations on our abilities to model dynamic shock processes accu-
rately, but advances in computing have greatly extended the capabilities of numerical sim-
ulations. In particular, molecular-dynamics (MD) simulations solve Newton’s equations of
motion for a collection of interacting particles over a number of time steps [9]. The size
of the simulated system is limited by the number of available processors, and simulations
of 107 — 10! atoms are now possible using the largest parallel computers. MD simulations
generally probe strain rates well above 10°/s and, therefore, are a natural complement to
understand atomic level mechanisms during shock compression. Linking to longer time and
larger length scales could be accomplished within a multiscale framework, for instance by
dislocation dynamics informed by MD simulations and coupled to a finite elements mesh
[10].

Most atomistic shock simulation studies have investigated single crystal response to
shocks along the (100) direction [11-13]. On the other hand, nearly all experimental studies
of shock waves in metals have been performed with polycrystalline samples [1-3]. Clearly,
in the majority of metals, the directional anisotropies in single crystals will give rise to

direction-dependent Hugoniot relationships. Such anisotropies could be mapped by MD



simulations and provide a guide to future and ongoing [7, 8] experimental efforts. Germann
et al. [14] presented results for the Hugoniot of a Lennard Jones (LJ) fcc crystal showing a
rich variety of behaviors depending on shock orientation.

A shock wave can be produced if a surface force, to which we will refer as a piston, is
steadily applied to a material on one side. In the limit of zero piston pressure we expect to
obtain a shock velocity equal to the longitudinal sound speed. The longitudinal /transverse

sound speeds, in an isotropic elastic medium, can be calculated as cop/r = \/AL/TK/ ,

3(1-v), _ 3(1-2v)
(1) Ap = 2(1+40)

where K is the bulk modulus, p is the density of the material, and A, =
with v the Poisson ratio. For non-zero piston pressure, the Hugoniot relationships [15], i.e.
conservation of mass, momentum and energy at the shock front, apply and give the shock
speed Uy as Us = U, /e, where U, is the particle velocity and e = (1 — py/p) is the volumetric
compressive strain. In the strong shock regime, when the plastic wave has overdriven the

elastic wave, it is typically found that
Us - Uo + SlUp: (1)

where s; is a constant in the range 0.5-2.5, and U, ~ ¢,, the bulk sound speed. Of course,
if there is a phase transition, the slope of the Hugoniot may change, and this has often
been used as a diagnostic to detect such a transition. Using reasonable approximations for
a model solid, it can be shown that the Griineisen parameter 7 is a function only of the
compression, €, and s; [16]. For the limit of ¢ = 0, v = 27 — 1 [15, 16]. On the other hand,
the fact that s; is a constant for strong shocks implies that there is a limiting compression
value, ¢ = 1 — 1/s;. The Griineisen parameter at this compression limit is often given as
Ye = 2 (s1 — 1), which is smaller than the previous value by 1 [16].

The relatively simple picture above is no longer true for an anisotropic solid. For instance,
for propagation along (100) in a cubic crystal, ¢,na00) = \/m and cor(i00) = \/m,
where ¢;; are the elastic constants of the cubic crystal. Experimentally, for Cu the asymmetry
is large, corg100)/Coriooy = 1.49, with the anisotropy ratio A = 2ca/ (c11 — ¢12) = 3.21,
compared to A = 1 for the isotropic case [17]. The ‘isotropic’ Griineisen parameter is no
longer applicable. One needs to calculate an anisotropic Griineisen parameter and also needs
a direction-dependent equation of state [18].

Typically, three regions may be identified in the Us — U, Hugoniot [14]. For U, < Upngr,
only an elastic front is observed. At the Hugoniot Elastic Limit (HEL), a plastic wave



appears, and this wave may be under-driven, moving slower than the elastic wave up to
Uy, < Ups. For U, > U,s the plastic wave overdrives the elastic front, which is not stable. In
this last regime the velocity of the elastic front is not the same as the one of the plastic front,
but lower. The region Uypgr < U, < U,s may be narrow or not exist at all, depending on
the material. For any crystal direction, in the limit U, — 0, Us — ¢, > ¢,. On the other
hand, in the strong shock regime Eq. 1 is valid. Since ¢, > ¢,, there must be a change in
slope for velocities below the strong shock regime.

The dependence of the plastic wave speed on orientation may be understood in terms
of both elastic and plastic anisotropy. Using the result of Drugan [19] the steady-state
shock behavior may be interpreted using the solution for a smooth wave. One such smooth
wave solution for a rate-independent elasto-plastic material, given by Lubliner [20], gives

the wavespeed as:

U, =V Ai/p. (2)
with
Ay =K +(2/3)h —2h*/(3h + 6u) (3)

where g is the shear modulus, and % is the plastic modulus (hardening rate). For h < pu

(the usual case), this reduces to:
Ay~ K +(2/3)h (4)

Thus the plastic wave speed depends in general upon bulk modulus, the shear modulus,
and the plastic modulus. Although the bulk modulus of a material with cubic symmetry is
independent of loading direction, both the shear and plastic response depend quite strongly
on oriention. For copper, the shear modulus varies by over a factor of three depending on
orientation [21] while the strain hardening depends strongly on loading direction [22]. As the
shock strength increases the hardening response saturates resulting in less plastic anisotropy.
Given these combined effects of elastic and plastic anisotropy, it is expected that the shock
response of single crystals (and textured polycrystals) should be anisotropic.

In principle, if one is only interested in the Hugoniot curve for polycrystals, one can
obtain very good agreement with experiments by calculating an accurate bulk modulus as

function of the pressure and temperature [23], and any potential giving that functional form



will also suffice. This is because the constant ¢y is equal to the bulk sound velocity at
zero pressure (/K /p), and the Griineisen parameter, which gives s, can be related to the
pressure derivative of the bulk modulus [18]. This approach could be extended to single
crystals calculating the appropriate elastic constants as a function of pressure. With this
information one can obtain the equilibrium states that form the Hugoniot. However, this
approach, or the use of equilibrium MD calculations [24], does not provide any information
on when will plastic behavior start, what kind of plastic behavior will be found, etc. This
is where non-equilibrium MD simulations play an important role, with the disadvantage
that they are computer intensive. Constrained techniques, like the “Hugoniostat” [13], can
bridge these two approaches.

In this work, we present a comparison of experiments and simulation for the (100) shock
Hugoniot of solid Cu, and simulation results for the Hugoniot along other crystalline di-
rections, finally averaging these results to compare with experiments on polycrystals. The
overall behavior for an fcc I.J solid presented by Germann et al. [14] is qualitatively similar
to the one seen here for KAM potentials, but important quantitative differences arise as

discussed below.

A. Experiments

Plate impact experiments (1D strain) were performed on single crystal copper using
LLNL’s 35 mm light gas gun. The flyer plate (impactor) of polycrystalline copper was 1.5 mm
thick. The target plate was 5 mm thick. The experiments were designed to look at the spall
behavior of copper and measured free surface velocity using laser interferometry (VISAR)
[25]. Hugoniot measurements were backed out of the data using an impedance matching
technique. At the flyer-target interface, pressure and particle velocity are identical in both
samples. Using the Hugoniot relation P = poU,U,, where P is the Hugoniot pressure and pj
is the initial density, allows one to calculate the shock velocity of the target assuming that
one knows the Hugoniot of the polycrystalline copper flier [a standard - U, = 3.94km/s +
1.489 U, (km/s)] and the particle velocity of the target which is taken to be one half the free

surface velocity.



B. MD Simulations

The simulations were performed with the MDCASK code [26], adapted to simulate shock
waves [27]. A box elongated along the 7 direction was equilibrated during several ps at
1.5 K, using periodic boundaries only along the x and y directions. A square pulse shock
wave was applied along Zz by adding an external force to few planes of atoms on one of the
free surfaces. The applied force was kept constant throughout these simulations, although
a time dependent profile could be applied. Velocity profiles were analyzed at subsequent
times to calculate both U, and U,. Following a transient stage, typically around 0.5 ps, the
elastic shock profiles reached a steady state, allowing a determination of U, and U, with
errors generally smaller than 5%. Both plastic and elastic fronts were seen in the simulations
above a “plastic threshold”, as for the LJ simulations [14]. Our simulations, employing a
planar, but fully 3-D geometry, are quite different from “equilibrium” simulations where
the Hugoniot is extracted from a “hydrostatic” compression at relatively small system sizes
[24]. Thus, we can easily capture the evolution of the shock without the assumption of local
thermal equilibrium, together with the detailed dynamics of the deformation originating at
the front.

Most “non-equilibrium” shock simulation studies of fce solids have used pair potentials,
including T.J [11-14], Morse [28], exponential-6 [29], etc. Taylor and Dodson recently pre-
sented results on the Hugoniot of EAM Cu along (100) using an embedded-atom (EAM)
potential, for U, € (0,2.5) and a target with 4 x 4 x 30 unit cells [28]. Ryazanov et al.
[30] have also presented some simulations of point defect formation by multiple weak shock
waves in EAM Cu, and Kum [31] has shown results for shock waves at a single U, above the
plastic limit for EAM and Morse Ni along (100), (110) and (111). None of these simulations
have been compared with experimental data on single crystals.

Here we consider two many body potentials, of the embedded atom form, EAM1 [32]
and EAM2 [33]. For shock waves along (100) most simulations were performed with sample
sizes of 50 x 50 x 200 fcc cells, i.e. 2 x 10° atoms. Using the lattice parameter for Cu,
a, = 3.615 A, the size of the sample was 18.1 x 18.1 x 72.3 nm?®. Several of the results for
EAM2 were obtained for smaller samples with a cross section of 25 x 25 cells, and results for
these two sample sizes were indistinguishable for the EAM2 potential. Near the threshold for
plasticity, plastic shock waves appeared few ps after the shock was applied and it took them



few additional ps to reach a steady profile, stressing the need to simulate very large samples
(more than 100 fcc cells long) for reliable calculation of Us astic with this scheme. For the
other two crystalline directions similar sample sizes were used. The following velocities will
be given in km/s, unless noted otherwise.

For any pair potential, ¢c19 = ¢44, which fixes the anisotropy. This relationship does not
hold experimentally for metals and many body potentials, like EAM, are needed to solve
this discrepancy. In addition, it is important to point out that any potential with range
Teus less than the 37¢ nearest neighbor distance will have a stable stacking fault (SF) energy
equal to zero, vsr = 0. These potentials may have a non-zero, small, unstable SF energy
which will provide a barrier for dislocation nucleation. However, once partial dislocations
are nucleated, only vsr > 0 results in a finite separation between partial dislocations in the
fee crystal, dgp. Therefore the behavior of dislocations cannot be accurately simulated for
short range potentials. Table T shows some relevant properties for the potentials discussed
in the text. dgp is given at zero pressure and may increase under pressure. At a minimum,
the lateral size of an MD target must accommodate dgr. Using the zero-pressure value for
dgr at least 6 unit cells are required in the lateral direction for the EAM2 potential and
22 for the EAMI potential. EAM2 was fitted to the ab-initio cold curve of Cu, making it

particularly attractive for shock simulations.

II. RESULTS

In Fig. 1 we have plotted the simulated (100) Hugoniot along with recent single crystal
Cu gas-gun data. The EAM?2 potential is in good agreement with the experimental results,
while the EAMT1 potential is shifted slightly to higher values of U,. Results for both KEAM]1
and EAM2 are quite close, indicating that the long range part of the potential (beyond
3"¥NN) does not play a key role in the (100) Hugoniot below melting. The different values
of vgr do not make a significant difference for the elastic Hugoniot, but do impact the plastic
deformation at a given U,, giving different stacking fanlt densities for the two potentials at
the same piston velocity. The fit to the strong shock regime for a I.J crystal is also included,
and shows a large deviation with respect to the experimental data and the KEAM results.
The LJ potential gives Us = cor100y + 1.92U, [14], where the value of ¢,r(100) could be fit
to the experimental data by chosing the appropriate L.J parameters. The EAM2 potential



gives Us; = (4.1 £0.1) + (1.3 £ 0.1) U, for the range shown in the figure and it is extremely
close to the experimental data. The Morse potential provides a good way to compare results
for many body and pair potentials, since a LJ potential is very close to a “stift” Morse with
a stiffness parameter oo ~ 6 [36, 37], and the cold curves for the Morse and KAM potentials
are comparable to each other when using « ~ 3 [38]. One calculation for a Morse potential
[36] is also shown in Fig. 1. This value is in good agreement to the Hugoniot results for
a Morse potential from ref. [28] using a much smaller system. Since the Morse potential
has a much wider well and is softer at short distances, the Hugoniot is expected to be less
steep than that of the L.J potential, as shown in Fig. 1. It has also been shown that Exp-6
potential, which is less steep than the LJ potential, gives a less steep Hugoniot than the 1.J
potential [29].

As expected, when U, — 0, Us — ¢, = 4.3. Indeed, Fig. 1 shows a small plateau,
where the shock velocity stays constant within our error bars as U, — 0. Plastic response
appears at (U,/c,) ~ 0.14, that corresponds to a compression of about 14%. This is lower
than the value for short-range LJ, which was (U, /c,r) ~ 0.2 [14], but happens at about the
same compression. The pressure for the HEL is therefore 32 = 2 GPa, much higher than
experimental values [39]. This is not unexpected, since even “perfect” crystals used in the
experiments have a pre-existing density of defects [8] that act as nucleation sites for plasticity
to begin at a lower stress value. Holian and Lomdahl [11] showed that a non-planar piston
leads to a reduced HEL, and preliminary simulations we have carried out including extended
defects in our perfect crystal do lower the HEL significantly [40].

The shear stress behind the shock front is only a small fraction of the applied stress, while
the hydrostatic pressure is comparable to the applied stress. Therefore, the net shear stress
near the plastic threshold is only few GPa, similar to the ideal yield stress of single crystals.
It is difficult to calculate the HEL for uniaxial compression, but estimates assuming a perfect

elasto-plastic solid without strain rate effects are often used [16, 41, 42]:

2
HEL =~ Py + 2Y; (5a)
(1-v)
~ Y, 5b
(1—2v)"° (5b)
K 2
~|—+- )Y
(5 +3) % (50

where Y} is the yield strength of the material, and all quantities are evaluated at the ap-



propriate hydrostatic pressure, Py, which is not known a priori. Using zero pressure values
Eq. 5c gives ~ 4.6 GPa, and employing values of K and p at ~ 35 GPa does not give a
significant increase in this estimate. The large difference between the HEL from MD and
this estimate indicates the limitations of using simplified models for shock behavior in solids.

Figure 2 shows snapshots of the velocity profile along the z direction 3 ps after the shock
was applied, for a piston pressure close to 100 GPa. In all cases there is an elastic and
plastic wave. For the (100) direction both the plastic and elastic wave move at roughly the
same speed, and can only be separated examining the structure of the sample behind the
shock. For the (111) direction, an elastic precursor is seen, followed by the plastic wave.

In the LJ simulations [14] a number of elastic precursors was seen at zero temperature
for shock waves along (100) and for shock waves along (110) when the initial temperature
of the sample was below T,,.;;/10. We observe elastic precursors at finite temperature below
the plastic limit for (100), and for all simulated piston pressures along (110). For instance,
Fig. 3 shows one snapshot 4 ps after the shock for Py ~ 50 GPa. The kinetic energy
map shows the layering of planes, alternating low and high kinetic energy regions, due to
plane-plane collisions. A potential energy map shows the complimentary effect, as in a
“harmonic oscillator”, with lowest potential energy corresponding to highest kinetic energy
and viceversa.

The varied behavior seen in Fig. 2 translates into widely different Hugoniot relationships
along different orientations. Fig. 4 shows the MD results using the potential EAM2 for
the shock Hugoniot along (100), (110) and (111) directions. The experimental data for
polycrystalline Cu for U,, < 4 can be reasonably well fit by Uy = 3.96 + 1.5 U,, for the pressure
range simulated [1-3], and this fit is also shown in Fig. 4. Below melting, the (100) and
(111} curves have slopes much lower than those obtained from the LJ potential simulations.
The slope of the Hugoniot does not change noticeably due to melting, which occurs in the
range 200-220 GPa (2.0-2.2 Mbar), in agreement with experiments on polycrystalline Cu
[43], with equilibrium “hydrostatic” MD simulations [24], and with a recent shock-release
model of melting [44]. The higher values for the (110) Hugoniot are related to the plane-
plane collisions that propagate the shock faster than along the other two directions. Using
our simulation data and 7y = 251355 — 1, we have calculated the limiting value of the
directional Griineisen parameters. These values are 1.6, 3.4, and 3.1 for (100), (110) and

(111). For shock data of polycrystalline Cu, the experimental isotropic Griineisen parameter,
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Vizk)» has been reported to be 1.99 [45], and 1.98 [15].

How can we relate our simulations to the many experimental results on polycrystalline
Cu? There have been a number of studies using numerical continuum models of shock
propagation through rectangular [46] or spherical grains [47], but unfortunately, different
values of the shock velocities were not taken into account. A model numerical simulation
of shock propagation through a polycrystalline slab with anisotropic shock velocities shows
large deviations from the isotropic case, even for small anisotropies [48]. As an initial step,

we have attempted to provide limiting bounds for polycrystalline Cu using the Voigt (U, yrign)
and Reuss (U, 1., ) averages of our single crystal results [21]. This analysis assumes that grain
boundary effects can be neglected and that the grain distribution along directions other than
(100), (110), and (111) can be lumped into the distribution of these three directions. Fig.
5 shows the resulting shock velocity limits. In order to obtain the curves in Fig. 5, we fit
the results from Fig. 4 to polynomials of 4% order in the range U, € (0.0, 8.0) and use these
polynomials to build the averages. A procedure similar to Voigt averaging has been used to
estimate shock wave profiles in polycrystalline Ni [49]. Notice that the slope of the mean
values is close to the best fit of experimental results, but appears shifted upwards for equal
fractions of grains in the different directions. Increasing the (100) fraction does lower the
mean values, and this is consistent with (100) being the preferred orientation in annealed
polycrystalline Cu, as confirmed by experiments [50]. Voigt and Reuss averaging differ by
less than 2.5 % for our simulations.

A calculation of the “isotropic” Hugoniot from Mitchell et al. [2] can be also seen in Fig.
5. Notice the change in slope of the Hugoniot at low velocities, which departs from both
experiments and our simulation results. Since the energy behind the shock stays well below
the Fermi energy for the piston velocities considered here, the electron thermal contribution
to the EOS is small compared to the cold lattice pressure and the ion thermal (vibrational)
pressure. Therefore, electron thermal conductivity will not affect the Hugoniot [51], and
it is typically not included in a Griineisen-type EOS. MD calculations including electronic
thermal conduction and electron-phonon coupling through a two-temperature model (TTM)
[52] are in progress, but for relatively small shock pressures the TTM contribution is small,

as expected [53].
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III. SUMMARY

We have presented MD simulations of the Hugoniot relationship for Cu, for pressures in
the range of 2 - 800 GPa (20 kbar-8 MBar), which includes the melting transition. Our
simulation results agree well with new experimental data for single crystal shocks along
(100) and U, < 1. Qualitatively the results for pressures below melting agree with results
from LJ solids [14], with several quantitative differences.

We observed that the shock velocity has a plateau, with U; = ¢,r, in the elastic region
at low U,. The HEL occurs at 32 £ 2 GPa for all studied directions, at a compression of
~ 14 % and a ratio (U,/c,r) ~ 0.14 — 0.2, similar to the LJ potential results [14]. Since
simulations were carried out for perfect single crystals, the HEL from MD is much higher
than the experimental value [39] and estimates based on a simple elasto-plastic model of
the solid. Melting is found to happen in the range 200 — 220 GPa, in agreement with both
experiments [43] and equilibirium MD simulations [24]. Melting happens at (U, /U,) ~ 0.375,
ie. (Up/coL<ijk>) = 0.5 — 0.75, while for the LJ crystal (Up/coL<ijk>) ~ 1 at melting.

The slopes of the Hugoniot along (100) and (111) are much softer for EAM Cu than for
the LJ system. The (110) and (111) results which were relatively close to each other for LJ
in the strong shock regime below melting, now show large differences. As shock pressure
increases, the Hugoniot curves for all directions do converge to the polycrystalline result, as
expected, but the convergence happens near the melting pressure for the plastic front and
at even higher pressures for the elastic precursor.

We also presented a simplified analysis of the average shock velocity for polycrystalline Cu,
and find that the value of the average Hugoniot is up to 20 % larger than the experimental
Hugoniot for polycrystals. This difference decreases if one assumes a dominant (100) texture.
This is consistent with the observation that a large contribution from (100) texturing is
required in polycrystalline experiments to account for the experimental value of the limiting
Griineisen parameter. The calculation of directional Griineisen parameters for both pair and
many-body potentials would allow a direct comparison of our limiting compression factors,
and would pave the way for future anisotropic equations of state.

We have carried out some preliminary Hugoniot calculations for crystals including defects
which decrease the HEL [40], and they seem to indicate that the elastic Hugoniot is not

changed, while the plastic Hugoniot moves closer to the polycrystalline Hugoniot data.
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Even well annealed Cu single crystals have a dislocation density 10°-10%/cm?, leading to
a low experimental HEL [39]. Therefore, dislocation sources, and not texture, could be
an alternative explanation to the departure of the calculated single crystal Hugoniot with

respect to the polycrystal Hugoniot, even after averaging over different directions.
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TABLE I: Parameters for the potentials discussed in the text. “r.,; shell” indicates the last shell of

neigbors included by the potential cut-off. dgr is the equilibrium separation between SF at P=0.

Potential LJ¢ EAMI1 KEAM2 Exp.

7oyt Shell ond grd qth

Ysr (mJ/m?) 0 11.4 44.0 45.0° - 78.0¢
dsp (nm) 00 ~ 8 ~ 2 ~2—-1
“Ref. 14.

bRef. 34.

“Ref. 35.
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FIG. 1: Shock velocity versus piston velocity along (100). MD simulations for different potentials:
EAMT (solid squares), EAM2 (open squares), and Morse potential (diamonds). Two single points
for underdriven plastic shock waves were omitted for clarity for the EAM2 potential. Experimental
points (up triangles) are also shown, together with linear fits to LJ potential simulations [14] (solid

line), and the EFAM2 simulations [fit in the interval U, = (0,1.5)] (dashed line).

FIG. 2: Snapshots of velocity profiles for shock waves along (100), (110), and (111) (from top to
bottom), taken 3 ps after the shock was started, for a piston pressure of 100 GPa. Dashed lines

give approximate location of plastic front.

FIG. 3: Snapshots of a shock along (110), showing the elastic precursors and the plastic wave.
Coloring proportional to the kinetic energy of the atoms. The volume of the simulated sample was

roughly 25a, x 25a, x 100a,, with a, = 3.615 A.
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FIG. 4: Shock velocity versus piston velocity along different crystalline directions: (100), (110},
and (111). Both elastic and plastic velocities are shown. An isobar at 220 GPa gives a rough
estimate of melting (dashed line). Large error bars for the elastic shock above melting for (110) are
due to a short-lived elastic precursor that is promptly overrun by the melting wave. Dislocation
production, and therefore a plastic shock wave, was observed for U, = 0.75 km/s along the (111)
direction (arrow shown), but an accurate value for the plastic shock velocity for that U, was not

obtained.

FIG. 5: Shock velocity versus piston velocity using Voigt and Reuss averaging over differ-
ent crystalline directions, for two different textures. Fit to experimental data for polycrystals,

Us = 3.96 4+ 1.5 U, (solid line), and “isotropic” EOS calculations [2] (squares) are also shown.
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